Project Description

مبانی سیستم های راهگاهی
یک از عوامل لازم در تهیه قطعات ریخته گری سالم آگاهی از چگونگی رفتار مذاب از هنگام ورود به داخل قالب تا مرحله خاتمه انجماد آن است .
با نگرشی به قطعات ریختگی بجای مانده از زمان های بسیار دور می توان دریافت که ریخته گران گذشته تا چه حد به اهمیت راهگاه گذاری صحیح قطعات توجه داشته اند .
مطالعه سیستم های راهگاهی ( Gating systems ) بدون آشنایی به رفتار انقباضی مذاب و مسئله تغذیه گذاری ( Risering ) قطعات امکان پذیر نیست . به همین دلیل لازم است در طراحی سیستم های راهگاهی چگونگی انقباض مذاب ( Liquid shirinkage ) قبل از شروع انجماد و در مرحله انجماد ( Solidification shrinkage ) نیز مد نظر قرار می گیرد .
و ظایف یک سیستم راهگاهی مناسب به شرح ذیل است :
1- انتقال مذاب از بوته به محفظه قالب با سهولت انجام پذیرد .
2- حرکت مذاب در مجاری و راهگاها با حداقل حرکت اغتشاشی انجام گیرد .
3- مذاب به گونه ای وارد قالب گردد که سردترین قسمت بار به دورترین قسمت محفظه قالب رفته و گرم ترین آن در راه گاها باقی بماند این حالت موجب می شود تا از ایجاد حفره های انقباضی مذاب در قطعه ریخته گری جلوگیری گردد .
4- راهگاها آنقدر بزرگ در نظر گرفته شوند که مذاب بتواند اولاً محفظه قالب را کاملا پر کرده و ثانیا به تغذیه قطعات ریختگی کمک کند .
معایبی که در اثر عدم دقت در طراحی سیستم های راهگاهی امکان وجود دارند عبارتند از :
1- وارد شدن ماسه شلاکه ( Slag ) و ناخالصی ها ( Impurities ) به همراه مذاب به محفظه قالب خصوصا تجمع در بالا قالب .
2- خشن شدن سطح قطعه ریختگی
3- جذب گاز در مذاب و ایجاد مک و حفره در قطعه ریختگی
4- اکسید شدن بیش از حد مذاب
5- ایجاد حفره های انقباضی در قطعه ریختگی
6- نفوذ مذاب در ماهیچه ها
قبل از پرداختن به چگونگی طراحی یک سیستم راهگاهی باید اجزاء مختلف آن را شناخت که در شکل اجزاء یک سیستم راهگاهی نشان داده شده اند .
اصل بقاء انرژی : قانون برنولی ( Bernoulli,s equation )
در یک سیستم بسته جمع جبری انرژی همواره مقدار ثابتی می باشد . درون این سیستم بسته امکان تبدیل صورت های مختلف انرژی به یکدیگر وجود دارد در حالی که جمع جبری انرژی های موجود در سیستم ثابت می ماند .
هر مایع در حال جریان درون یک سیستم بسته دارای سه نوع انرژی می باشد :
الف ) انرژی پتانسیل :
عبارت است از انرژی واحد وزنی از مایع که در ارتفاع h از صفحه مبنا قرار گرفته است .Ep = h
ب ) انرژی فشاری
انرژی حاصل از فشاری است که بر واحد وزن مایع اعمال می گردد .
Epr = p/γ
که در آن گاما وزن مخصوص و ح فشار می باشد .
ج ) انرژی تحرکی
توسط عزم حرکتی واحد وزن مایع متحرکی که با سرعت v در حال جریان است بیان می گردد .
Ek = v2/2g
جریان آرام و اغتشاشی مایع ( Laminar and turbulent flow )
جریان هر مایعی درون یک کانال می تواند به دو صورت آرام یا اغتشاشی انجام گیرد . حرکت مایع بصورت آرام هنگامی است که سرعت جریان آن در یک کانال از دیواره کانال تا مرکز آن به تدریج افزایش یابد .
از نظر تئوری بر اساس این تعریف سرعت جریان مذاب در دیواره راهگاهها را می توان صفر در نظر گرفت و در مرکز سطح مقطع سرعت در حداکثر مقدار خود می باشد .
سرعت پرشدن قالب از مذاب و طراحی تنگه ( Choke )
به کمک بعضی از قوانین فیزیکی ذکر شده می توان سرعت پر شدن قالب از مذاب را محاسبه کرد . برای انجام این منظور لازم است سطح مقطع آن قسمتی از راهگاهها را که کمترین حجم مذاب در واحد زمان را می تواند از خود عبور دهد بدست آوریم . این سطح مقطع اصطلاحا تنگه نامیده شده و با Ac نشان داده می شود .
در اکثر موارد تنگه در نزدیکی سطح جدایش قالب تعبیه می گردد . شکل زیر یک سیستم راهگاهی را نشان می دهد که تنگه در محل تماس راهگاه اصلی ( R ) و راهگاه فرعی ( G ) احداث گردیده است .
H ارتفاع مذاب از سطح بالای حوضچه تا خط جدایش و S راهگاه بارریز و L ارتفاع تا بالای محفظه قالب و X ارتفاع مذاب پرشده در بالای قالب از سطح جدایش می باشد که متغیر است .
شیب دادن راهگاه بارریز( The tapering of the sprue )
راهگاه بارریز یک کانال عمودی است که مذاب را از حوضچه به داخل راهگاه اصلی هدایت می کند . در شروع ریختن مذاب سرعت جریان آزاد مذاب در راهگاه بارریز به همراه افزایش فاصله آن از سطح حوضچه افزایش می یابد .
به هر حال در صورتی که راهگاه بارریز به جای مخروط ناقص به صورت استوانه ای باشد ایجاد فضای خالی در طول راهگاه بارریز تنها در مراحل اولیه ریختن مذاب به داخل قالب می باشد . علت این امر آن است که به علت وجود تنگه در سیستم راهگاهی مذاب ریخته شده در قالب بلافاصله باعث پر کردن کامل راهگاه بارریز می گردد به همین دلیل در سیستم راهگاهی صحیح طراحی شده برای چدن ریزی در موارد بسیار ی از راهگاه های بارریز بدون شیب استفاده می گردد .
فشار و سرعت در راهگاه های فرعی
بطور کلی دو نوع سیستم راهگاهی از نظر فشار روی مذاب و سرعت جریان مذاب وجود دارد که عبارتند از : سیستم فشاری و غیر فشاری
ویژگی سیستم فشاری آن است که سرعت سیلان مذاب در راهگاه فرعی و بر مبنای کل ارتفاع فرواستاتیکی مذاب در قالب تعیین می شود در حالی که سیستم غیر فشاری عامل تعیین کننده این سرعت ارتفاع مذاب در راهگاههای فرعی می باشد که کاملا از مذاب پر نباشد و از طرف دیگر سیستم راهگاهی را هنگامی فشاری گویند که کنترل میزان مذاب ورودی به محفظه قالب توسط سطح مقطع بین راهگاه اصلی و همه راهگاههای فرعی انجام گیرد در این سیستم مجموع سطوح مقاطع راهگاه های فرعی کمتر از سطح مقطع راهگاه بارریز می باشد .
در سیستم غیر فشاری کنترل میزان مذاب ورودی به محفظه قالب توسط سطح مقطع تحتانی راهگاه بارریز و قسمتی از راهگاه اصلی که در مجاورت راهگاه بارریز قرار دارد انجام می گیرد . در این سیستم مجموع سطوح مقاطع راهگاههای فرعی از سطح مقطع راهگاه بارریز بیشتر بوده و در نتیجه فشار مذاب در راهگاه بارریز گرفته می شود .
محاسبات سیستم راهگاهی
طراحی و محاسبات سیستم راهگاهی بدون آشنائی به مبانی فیزیک و متالوژی چنانچه غیرممکن نباشد حداقل بیسار مشکل است .
در روش قالب گیری ماشینی مواردی دیده می شود که برای پرهیز از مخارج زیاد تهیه تعدادی مدل مشابه قطعات با اشکال مختلف را روی یک صفحه مدل قرار می دهند این عمل توصیه نمی گردد زیرا تنوع قطعات ریختگی در یک قالب طراحی سیستم راهگاهی و تغذیه گذاری قطعات را با مشکلات زیادی روبرو می سازد .
بهترین طرح ساده ترین طرح است لذا بهتر است تا حد امکان از قطعات مشابه در یک قالب استفاده گردد.
علاوه بر مطالب فوق توجه به نکات زیر در طراحی موفقیت آمیز راهگاه و تغذیه قطعات ریخته گری چدنی لازم است :
1- از حداکثر فضای قالب به منظور استفاده از حداکثر بهره دهی قطعات استفاده کنیم ضمن آنکه جالی خالی مناسب برای راهگاهها و تغذیه ها باقی بگذاریم .
2- به مرغوبیت مذاب و کیفیت قالب توجه داشته باشیم .
3- سطح جدایش قطعه ریختگی را به گونه ای انتخاب کنیم که نیاز به ماهیچه گذاری را به حداقل رساند .
4- تمام قطعات یا اکثر آن ها در درجه بالائی قرار گیرند تا پرشدن آن ها از مذاب به آرامی انجام شود .
5- به منظور استفاده از حداکثر بهره دهی تغذیه ها بهتر است از یک تغذیه برای دو یا چند قطعه ریختگی استفاده گردد .
وظیفه اصلی یک سیستم راهگاهی آن است که مذابی تمیز و عاری از شلاکه و ناخالصی ها را به محفظه قالب منتقل کند به این منظور سه نکته زیر باید رعایت شوند :
1- ایجاد ارتباط مذاب موجود در محفظه قالب با فضای خارج
2- گرفتن شلاکه و ناخالصی ها
3- ایجاد شرائطی که گاز ها و هوای موجود در قالب را بتوان به فضای خارج منتقل کرد
سیستم فشاری ( Pressurized gating system )
در این سیستم مجموع سطوح مقاطع راهگاههای فرعی کمتر از سطح مقطع راهگاه بارریز است زیرا در چنین حالتی همواره فشاری در پشت مذاب در حال جریان موجود خواهد بود . در این سیستم راهگاهها بلافاصله از مذاب پر شده و فشار پشت فلز موجب می شود که مذاب در راهگاهها پس زده نشود و در هنگام استفاده از چند راهگاه فرعی با سطوح مقاطع یکسان مقدار جریان مذاب در تمام آن ها برابر است ولی در سیستم غیر فشاری تمایل خروج مذاب از دورترین راهگاه فرعی نسبت به راهگاه بارریز بیشتر می باشد .
در هر حال از آنجائی که سرعت جریان مذاب در سیستم های فشاری زیادتر است لذا بروز بعضی معایب در قطعات ریختگی متحمل خواهد بود برای مثال در گوشه هایی که دارای قوس تندی هستند حرکت مذاب اغتشاشی بوده و بنابراین جذب گاز در مذاب و درنتیجه ظهور اکسید ها و ناخالصی ها و شسته شدن دیواره های قالب می توانند رخ دهند .
سیستم غیر فشاری ( Non – pressurized gating system )
در این سیستم مجموع سطوح مقاطع راهگاه های فرعی از سطح مقطع راهگاه بارریز بیشتر بوده و در نتیجه فشار مذاب در راهگاه بارریز گرفته شده و مذاب به آرامی وارد محفظه قالب می گردد که در این سیستم از آن جایی که مذاب در این سیستم به آرامی وارد محفظه قالب می شود لذا جهش فلز به داخل محفظه قالب و حرکت اغتشاشی در آن وجود ندارد و با توجه به این واقعیت که در پشت مذاب فشار چندانی وجود ندارد لذا باید سعی کرد تا سیستم راهگاهی همواره از مذاب پر نگهداشته شود و امکان واردکردن یکنواخت مذاب به محفظه قالب از طریق راهگاههای فرعی مشکل است .
حوضچه بارریزی ( Pouring cup or basin )
گشاد کردن قسمت بالای راهگاه بارریز یا ایجاد حوضچه عمل ریختن مذاب را تسهیل می کند . عدم استفاده از حوضچه امکان ورود شلاکه به داخل راهگاه بارریز را زیاد می کند و هرچقدر حوضچه بزرگتر در نظر گرفته شود این امکان تقلیل می یابد . آن قسمتی از حوضچه که در امتداد لوچه پاتیل قرار دارد باید به اندازه کافی طویل در نظر گرفته شود . حوضچه هایی که کف آن ها پایین تر از سطح بالایی راهگاه بارریز قرار دارد وظیفه گرفتن فشار مذاب ورودی را نیز بر عهده داشته و موجب می شوند تا مذاب به آرامی وارد راهگاه بارریز گردد بدترین شکل برای حوضچه حالت قیفی و بهترین شکل برای آن نوع نشان داده شده در شکل می باشد .
در ریختن قطعات بزرگ استفاده از تله در حوضچه ها برای جلوگیری از ورود شلاکه به راهگاه متداول است از آنجائی که این روش جریان مذاب به داخل راهگاه بارریز را به صورت اغتشاشی در می آورد لذا غیرمفید تشخیص داده شده است .
قرار دادن مانعی روی قسمت بالای راهگاه بارریز به منظور پر کردن اولیه حوضچه از مذاب هم به دلیل مشابه مضر است . قطر یا عرض حوضچه باید حداقل دو برابر قطر جریان مذابی که از پاتیل به داخل آن ریخته می شود در نظر گرفته شود . عمق حوضچه نیز باید به صورتی باشد که در هنگام ریختن مذاب به داخل آن هیچگونه پاشیدگی مذاب صورت نگیرد . در شکل زیر ابعاد یک نوع حوضچه مناسب که بیشتر در ریخته گری انواع چدن با گرافیت کروی مورد مصرف دارد نشان داده شده است .
راهگاه بارریز ( Sprue )
استفاده از چند راهگاه بارریز در یک قالب به هیچ وجه توصیه نمی شود مگر آنکه قطعه ریختگی بسیار بزرگ بوده و ریختن آن نیاز به استفاده از چند پاتیل داشته باشد .
ارتفاع راهگاه بارریز بیشتر با توجه به ارتفاع درجه های موجود در کارگاه تعیین می شود . سطح مقطع این راهگاه در سیستم فشاری تقریبا 3 برابر مجموع سطوح مقاطع راهگاههای فرعی در نظر گرفته می شود و در سیستم غیر فشاری مجموع سطوح مقاطع راهگاههای فرعی تقریبا باید با سطح مقطع قسمت تحتانی راهگاه بارریز یکسان در نظر گرفته شود .
راهگاه بارریز معمولا بصورت استوانه ای در نظر گرفته می شود که سطح مخصوص آن اندکی کمتر از سطح مخصوص راهگاه با مقطع گوشه دار می باشد و جز این امتیاز دیگری ندارد .
بدلیل مشکلات عملی در تهیه قالب های ماشینی با سرعت بالا در سیستم های فشاری از راهگاه بارریز بدون شیب و یا با شیب جزئی استفاده می شود و در سیستم غیر فشاری همواره لازم است از راهگاه بارریزی استفاده شود که قسمت تحتانی آن کمترین سطح مقطع ممکن را در مقایسه با قسمت های دیگر آن داشته باشد در صورتی که در این سیستم از راهگاه بارریز بدون شیب استفاده شود باید در محل اتصال راهگاه بارریز و راهگاه اصلی از تنگه استفاده کرد .
راهگاه اصلی ( Runner )
بهترین طرح برای راهگاه اصلی ساده ترین آن هاست به همین دلیل چنانچه فضای درجه قالب گیری اجازه دهد بهترین نوع راهگاه اصلی نوع مستقیم است . ایجاد هرگونه قوسی در این راهگاه به ایجاد حرکت اغتشاشی مذاب کمک می کند چنانچه به کار بردن این قوس در راهگاه اصلی اجتناب ناپذیر باشد بایستی این قوس را با حداکثر زاویه ممکن ایجاد کرد در راهگاه اصلی انحنادار نباید راهگاه فرعی را نزدیک قسمت قوس راهگاه اصلی تعبیه کرد . چنانچه از یک راهگاه اصلی گرد استفاده شود باید از به کار بردن راهگاه فرعی در وسط قوس پرهیز کرد . اصولا در حالتی که برای قطعه ای استوانه ای شکل از راهگاه اصلی گرد استفاده شود توصیه می گردد که سیستم راهگاهی غیرفشاری بکار برده شود .
اتصال راهگاه بارریز به راهگاه اصلی
اولین قاعده برای طراحی اتصال فوق آن است که سطح مقطع در قسمت اتصال نبایستی از سطح مقطع قسمت تحتانی راهگاه بارریز کمتر باشد . قسمت انتهائی راهگاه بارریز باید با قسمت تحتانی راهگاه اصلی در یک امتداد قرار گیرند .
در انتهای راهگاه بارریز چاهکی به نام پای راهگاه تعبیه می شود که مذاب پس از پر کردن به راهگاه اصلی وارد می گردد . سطح مقطع افقی پای راهگاه می تواند حدودا دو برابر سطح مقطع افقی قسمت انتهایی راهگاه بارریز در نظر گرفته شود و عمق آن می تواند تقریبا برابر ارتفاع راهگاه اصلی باشد .
راهگاههای فرعی
راهگاههای فرعی به ویژه در سیستم های فشاری مهمترین جزء سیستم راهگاهی به شمار می روند . تعبیه ضخامت محاسبه شده راهگاه فرعی در مرحله قالب گیری به دقت زیادی نیاز دارد این مشکل در مواردی می تواند باعث افزایش ضایعات قطعات ریختگی شود حداقل ضخامت مجاز راهگاه فرعی به درجه حرارت ریختن مذاب بستگی دارد .
هنگامی که گوشه های راهگاه فرعی جامد شد همزمان با آن نصف ضخامت این راهگاه جامد می شود . محاسبه نشان می دهد که چنانچه راهگاه فرعی در قالب با یک شیب 45 درجه تعبیه گردد گوشه های آن حتی سریعتر جامد می شود .
در یک سیستم راهگاهی تعداد راهگاههای فرعی به طرح قطعه بستگی دارد . در سیستم فشاری عرض راهگاههای فرعی را نباید بیش از حد بزرگ در نظر گرفت زیرا در مرحله اولیه ریختن مذاب در قالب و قبل از آن که راهگاه اصلی از مذاب پر شود امکان ورود فلز و احتمالا شلاکه به داخل راهگاههای فرعی وجود خواهد داشت .
اصول طراحی سیستم فشاری
در ریخته گری چدنها و در بیشتر موارد استفاده از سیستم فشاری بر سیستم غیر فشاری ترجیح داده می شود . یکی از انتقادات به این نوع سیستم راهگاهی وارد شدن سریع مذاب از راهگاههای فرعی به محفظه قالب است که خود می تواند باعث شسته شدن ماسه قالب شود . سرعت جریان مذاب در راهگاه فرعی بسته به ارتفاع مذاب در راهگاه بارریز است .
یکی از مهمترین پارامترها در طراحی سیستم راهگاهی انتخاب زمان مناسب برای پرکردن محفظه قالب می باشد . اندازه مناسب برای تنگه تابعی از مدت زمان ریختن مذاب می باشد برای آنکه مذاب به سهولت و بدون تأخیر محفظه قالب را پر کند ایجاد منافذ هوا به منظور جلوگیری از ازدیاد فشار در محفظه قالب در اثر تراکم هوا و گاز های موجود در محفظه قالب ضروری می باشد.
درجه حرارت ریختن مذاب و ظرفیت پاتیل ها
انتخاب درجه حرارت ریختن مذاب بستگی به نوع سیستم راهگاهی و تغذیه گذاری قطعات دارد . برای ریخته گری قطعات چدنی با جداره های ضخیم با استقاده از تغذیه ریختن مذاب در درجه حرارتی بالایی انجام می شود .
انتخاب اندازه پاتیل بایستی به گونه ای انجام گیرد که افت درجه حرارت مذاب در آن حداقل مقدار ممکن بوده و خالی و پر کردن آن نیز با مشکلی مواجه نباشد و شکل لوچه پاتیل بسیار مهم بوده و به شکل U کشیده ترجیح داده می شود ضمن آن که سطح مقطع کانال بارریزی آن دو برابر سطح مقطع راهگاه بارریز در نظر گرفته می شود .
اصول طراحی سیستم غیر فشاری
نسبت بین سطوح مقاطع قسمت فوقانی راهگاه بارریز و تنگه باید در همان حدی در نظر گرفته شود که در سیستم راهگاهی فشاری معمول است در این سیستم وردو شلاکه به محفظه قالب می تواند در سه مرحله زمانی مختلف انجام گیرد : مرحله اول شبیه حالت فشاری است با این تفاوت که این زمان کوتاه تر بوده و احتمالا شلاکه نمی تواند به راهگاههای فرعی راه یابد و مرحله دوم با سیستم فشاری شباهت دارد و همین طور مرحله سوم .
در این جا ترجیح داده می شود که راهگاه اصلی به صورت مستقیم باشد و در این سیستم مجموع سطوح مقاطع راهگاههای فرعی باید بیشتر از سطح مقطع تنگه در نظر گرفته شود .
کوچکترین سطح مقطع در سیستم غیر فشاری در محل اتصال راهگاه بارریز به راهگاه اصلی واقع است . مجموع سطوح مقاطع راهگاههای فرعی معمولا دو تا چهار برابر سطح مقطع تنگه در نظر گرفته می شود . سرعت خطی جریان مذاب در راهگاه فرعی یک سیستم غیر فشاری کمتر از مقدار مشابه در سیستم فشاری است .
سیستم راهگاهی با سطح جدایش عمودی
تهیه قالب های ماسه ای با سطح جدایش عمودی به طور گسترده ای در ریخته گری رواج پیدا کرد . روش قالب گیری پوسته ای و روش های قالب گیری ماشینی بدون درجه با سرعت قالب گیری بالا که به سریع ریختن مذاب در قالب منتهی می شود از اهمیت زیادی برخوردار است . تکنولوژی راهگاهی در این روش قالب گیری هنوز در مراحل تکاملی خود قرار دارد در شکل زیر چند نوع متداول از سیستم راهگاهی با سطح جدایش عمودی نشان داده شده است .

روش راهگاه گذاری در ریخته گری چدن با گرافیت کروی برای اضافه کردن منیزیم به مذاب در راهگاه
در این روش آلیاز محتوی منیزیم را در محفظه ای درون سیستم راهگاهی قرار داده و مذاب عاری از منیزیم را درون قالب می ریزند . امروزه این روش در تهیه چدن با گرافیت کروی در سطح گستردهای در صنایع ریخته گری رواج یافته و دارای جاذبه های خاصی می باشد .
غالبا استفاده از سیستم راهگاهی با کنترل جریان مذاب در راهگاه فرعی اصلی توصیه می شود . یکی از مسائل مهم در اضافه کردن منیزیم به مذاب در سیستم راهگاهی امکان ورود شلاکه های منیزیمی به محفظه قالب می باشد به همین دلیل سیستم راهگاهی بایستی به گونه ای طرح گردد که شلاکه در راهگاهها باقی مانده و امکان ورود به محفظه قالب را نیابد .
معایب مربوط به سیستم راهگاهی و روشهای رفع آن ها
یکی از معایب سطحی بسیار آشنا در چدن های خاکستری و انواع چدن با گرافیت کروی حفره های گازی در سطوح فوقانی قطعات ریختگی می باشند در شکل زیر نمونه ای از آن آمده است .
ورود شلاکه به محفظه قالب و بجای ماندن آن در قطعه ریختگی از دیگر معایب معمول در قطعات چدنی است . اکسیدها منبع اصلی شلاکه را تشکیل می دهند ورود شلاکه به محفظه قالب همواره امکان پذیر است مگر آنکه سیستم راهگاهی به درستی طراحی گردد . برخی اکسید ها توسط کربن موجود در آهن مذاب احیاء می شوند . زمان باقی ماندن حبابهای گاز در سطح مشترک قالب و مذاب بستگی به اندازه حبابها و نوع چدن دارد .
انرژی لازم برای نفوذ حباب گازی از سطح مشترک فوق به جداره قالب به مقدار زیادی بستگی به انرژی سطح مشترک مذاب و قالب دارد از این لحاظ چدن با گرافیت کروی بدتر از چدن خاکستری بوده و احتمال بروز معایب گازی سطحی در آن تقریبا 50 درصد بیش از چدن خاکستری می باشد . سه مثال از عیوب فوق در شکل زیر نشان داده شده است .
برای جلوگیری از عیوب فوق طراحی سیستم راهگاهی ضرورت دارد و چنین جریان مذاب در راهگاهها و محفظه قالب باید به آرامی صورت گیرد . ورود شلاکه به محفظه قالب علل گوناگونی دارد نگرفتن شلاکه به طرز صحیح در پاتیل موجب ورود آن به محفظه قالب و حضور آن در قطعه ریختگی می گردد .
نوع چدن و سیستم راهگاهی
از نظر اصولی تفاوتی بین طراحی سیستم راهگاهی برای چدن های خاکستری و انواع چدن با گرافیت کروی وجود ندارد به هر حال به عنوان یک راهنمای کلی می توان چنین اظهار داشت که راهگاه گذاری چدن خاکستری از انواع چدن با گرافیت کروی ساده تر است .
یک اختلاف اساسی در راهگاه گذاری این دو نوع چدن آن است که چدن های خاکستری به راهگاه اصلی با حجم کمتری نیاز دارند و هم چنین گرفتن شلاکه و ناخالصی ها در ریخته گری چدن ها ی خاکستری ساده تر از انواع چدن با گرافیت کروی انجام می شود . مذاب چدن با گرافیت کروی دارای شلاکه بیشتری از مذاب چدن خاکستری است علاوه بر این ها مقدار سیلیسیوم در چدن خاکستری کمتر از چدن با گرافیت کروی است .
عمليات حرارتي چدن نشكن
مهمترين عمليات حرارتي كه روي چدن نشكن انجام مي شود و هدف از انجام آنها :
عمليات حرارتي كه در دماي پايين براي كاهش يا آزاد كردن تنش هاي داخلي باقي مانده پس از ريخته گري انجام مي شود.
● آنيل كردن
عمليات حرارتي كه براي بهبود انعطاف پذيري و چقرمگي ، كاهش سختي و حذف كاربيدها انجام مي شود.
● نرماله كردن
عمليات حرارتي كه به منظور بهبود استحكام به همراه كمي انعطاف پذيري انجام مي شود .
● سخت كردن و تمپر كردن
عمليات حرارتي كه به منظور افزايش سختي يا بهبود استحكام و بالا بردن نسبت تنش (تنش تسليم) انجام مي شود .
● آستمپر كردن
عمليات حرارتي كه به منظور بدست آمدن ساختاري با استحكام بالا به همراه كمي انعطاف پذيري و مقاومت به سايش عالي انجام مي شود .
● سخت كردن سطحي به وسيله ي القاء ، شعله يا ليزر
عمليات حرارتي كه به منظور مقاوم به سايش ساختن و سخت كردن موضعي سطح انتخاب شده انجام مي شود .
در اين مقاله عمليات آنيلينگ ، نرماله كردن ، آستمپر كردن ، كونچ كردن و تمپر كردن چدن نشكن شرح داده مي شود.
[b]آستنيته كردن چدن نشكن [/b]
هدف معمول آستنيته كردن اين است كه تا حد امكان زمينه ي آستنيتي با مقدار كربن يكسان قبل از پروسه ى حرارتى توليد شود. به عنوان مثال در چدن نشكن هيپريوتكتيك براي آستنيته كردن بايد از دماى بحرانى كمي بالاتر برويم به طورى كه دماى آستنيته در منطقه ى دو فازى ( آستنيت و گرافيت ) باشد. دماى آستنيته كردن به وسيله ى عناصر آلياژى موجود در چدن نشكن تغيير مى كند .
با افزايش دماي آستنيته كردن مي توان آستنيت تعادلي حاوى كربن كه در حال تعادل با گرافيت است را افزايش داد. كه اين پارامتر قابل انتخاب است( در زمان محدود). كربن موجود در زمينه ي آستنيتي كنترل دماي آستنيته كردن را مهم ساخته كه اين دما به منظور جلو بردن واكنش به مقدار زيادي به كربن موجود در زمينه ي آستنيتي بستگي دارد ، اين ساختار مخصوصاً براي آستمر كردن ساخته مي شود ، سختي پذيري (قابليت آستمپر كردن ) به ميزان زيادي به كربن موجود در زمينه و در واقع به عناصر الياژي موجود در چدن نشكن بستگي دارد ، ميكرو ساختار اصلي و سطح مقطع قطعه تعيين كننده ي زمان مورد نياز براي آستنيته كردن مي باشند
مراحل بعد از آستنيته كردن هنگامي كه مورد اهميت باشند عبارتند از : آنيل كردن ، نرماله كردن ، كونچ و تمپر كردن و آستمپر كردن .
آنيلينگ چدن نشكن
هنگامي كه حداكثر انعطاف پذيري و قابليت ماشينكاري عالي مورد نياز باشد و استحكام بالا مورد نياز نباشد ، عموماً چدن نشكن آنيل فريتي مي شود . بدين گونه كه ميكروساختار به فريت متحول مي شود و كربن اضافي به صورت مي باشد، اگر ماشينكاري عالي مورد 60-40-18 نوع ASTM كروي رسوب مي كند. اين عمليات حرارتي ساخته ي نياز باشد بايد مقدار منگنز ، فسفر و عناصر آلياژي از قبيل كرم و موليبدن درحد امكان پايين باشد زيرا باعث آهسته كردن پروسه ي آنيل مي شوند .
نحوه ي آنيل كردن توصيه شده براي چدن نشكن آلياژي و چدن نشكن با كاربيد يوتكتيك و بدو ن كاربيد يوتكتيك در پايين شرح داده شده است :
آنيل كامل براي چدن نشكن با 2%-3% سيليسيم و بدون كاربيد يوتكتيك :
گرم كردن تا دماي 870- 900 درجه ي سانتي گراد و نگهدار ي در اين دما به مدت 1 ساعت در ازاي هر اينچ ضخامت ،سپس سرد كردن در كوره با سرعت 55 درجه سانتي گراد در ساعت تا دماي 345 درجه ي سانتي گراد سپس سرد كردن در هوا.
آنيل كامل در صورت وجود كاربيد يوتكتيك :
گرم كردن تا دماي900C-870C و نگهداري در اين دما براي 2 ساعت و بيشتر از اين زمان براي ضاخمت هاي زياد ، سپس سرد كردن در كوره با سرعت 110C/hتا دماي 700Cو نگهداري در اين دما براي 2 ساعت ، سپس سرد كردن در كوره تا دماي 345Cبا سرعت 55C/h ، سپس سرد كردن در هوا .
آنيل كردن زير منطقه ي بحراني براي تبديل پرليت به فريت:
گرم كردن قطعات تا دماي705C-720Cونگهداري در اين دما به مدت 1 ساعت در ازاي هر اينچ ضخانت ، سپس سرد كردن در كوره با سرعت55C/h تا دماي 345C و سپس سرد كردن در هوا .
وقتي كه در چدن نشكن عناصر آلياژي وجود داشته باشد از سرد كردن سرتاسري قطعه جلوگيري مي شود و كاهش درجه حرارت از نقطه ي بحراني تا400C ادامه مي يابد و سرعت سرد كردن از55C/h كمتر مي باشد .
به هر حال برخي عناصر در شكل كاربيد خود اگر تجزيه ناپذير باشند به شكل كاربيد اوليه كه بسيار سخت است مي باشندكه اين حالت بيشتر در كرم مي باشد ، به عنوان مثال% 0.25 كرم باعث تشكيل كاربيد اوليه ي بين نشيني مي شود كه در اثر عمليات حرارتي تا دماي 925C و نگهداري در مدت2h-20h حتي نيز از بين نمي رود . زمينه ي حاصل از رسوب پرليت ، زمينه ي فريتي با كاربيد مي باشد كه فقط 5% ازياد طول دارد .
نمونه هاي ديگري از عناصر كه به شكل كاربيد در چدن نشكن وجود دارند عبارتند از موليبدن بيشتر از 0.3% و واناديم وتنگستن در مقدير بيش از 0.05%.
سختي پذيري چدن نشكن
سختي پذيري چدن نشكن يك پارامتر مهم تعيين كننده ي واكنش ثابت آهن براي نرماله كردن ، كونچ كردن و تمپركردن يا آستنيته كردن مي باشد. سختي پذيري معمولاً به وسيله ي آزمايش جاميني تعيين مي شود ، كه در آن از يك ميله با اندازه ي استاندارد (قطر 1 اينچ و ارتفاع 4 اينچ) استفاده مي شود كه آن را آستنيته مي كنند سپس يك سر آن را به وسيله ي آب سرد مي كنند ، نوسان در سرعت سرد كردن باعث بي ثباتي (متفاوت بودن) در ميكروساختار مي شود كه سختي آنها تغيير مي كند سپس آنها را تعيين و ثبت مي كنند.
زمينه ي با كربن بالا باعث بالا رفتن دماي آستنيته كردن و در نتيجه ي آن باعث افزايش سختي پذيري مي شود (منحني جاميني فاصله ي زيادي تا پايان سرد كردن پيدا مي كند ) و همچنين قطعه حداكثر سختي بالاتري پيدا مي كند. هدف از اضافه كردن عناصر آلياژي به چدن نشكن افزايش سختي پذيري است ، منگنز و موليبدن برحسب وزن اضافه شده به چدن نشكن نسبت به مس و نيكل عناصر بسيار موثري در افزايش سختي هستند.
در هر حال همانند فولاد افزودن تركيب نيكل – موليبدن يا مس – موليبدن يا مس – نيكل – منگنز نسبت به اينكه اين عناصر را به صورت جداگانه به چدن اضافه كنيم ، تاثير بيشتري خواهند داشت.
بنابراين براي ريخته گري مقاطع زياد كه نياز به سختي و آستمر زياد دارند معمولاً از تركيب ان عنصر استفاده مي كنند . سيليسيم صرف نظر از تاثيري كه روي زمينه ي حاوي كربن دارد تاثير زيادي روي سختي پذيري ندارد .
نرماله كردن چدن نشكن
نرماله كردن (سرد كردن در هوا در جريان آستنيته كردن) به طور قابل توجهي مي تواند باعث بهبود استحكام كششي شود.و امكان استفاده در ساخت چدن نشكن ASTM نوع 30-70-100 وجود دارد .
ميكروساختار حاصل از نرماله كردن به تركيب شيميايي چدن و سرعت سرد كردن بستگي دارد سختي تحميل شده به وسيله ي تركيب شيميايي قطعه به موقعيت منطقه ي زمان – دماي دياگرام CCT بستگي دارد .
سرعت سرد كردن به حجم قطعه ي ريختگي بستگي دارد ولي شايد بيشتر تحت تاثير دما و جريان هواي اطراف قطعه ي در حال سرد شدن باشد . اگر چدن حاوي مقدار زيادي سيليسيم نباشد و دست كم حاوي مقدار مناسبي منگنز(يا بالاتر0.5 %-0.3%) باشد به طور كلي نرماله كردن ، ساختار پرليت ظريف توليد خواهد كرد . قطعات سنگين در صورتي كه نياز به نرماله شدن داشته باشند براي بدست آوردن ساختاري كاملاً پرليتي و سختي پذيري بيشتر بعداز نرماله كردن حاوي عناصر الياژي از قبيل موليبدن و نيكل و منگنز اضافي هستند .
قطعا ت سبك چدن هاي آلياژي ممكن است بعد از نرماله كردن حاوي ساختارمارتنزيتي يا بينيتي باشند دماي نرماله كردن معمولاً بين870C-940C مي باشد و زمان استاندارد نگهداري 1h براي هر اينچ ضخامت و نگهداري به مدت 1h به عنوان حداقل در اين دما كافي است .براي چدن هاي حاوي عناصر آلياژي به دليل كاهش نفوذ كربن در آستنيت زمان بيشتري نياز است به عنوان مثال قلع و آنتيموان براي گرافيت هاي كروي ، به طور موثري از حل شدن كربن در زمينه ي حاوي گرافيت كروي جلوگيري مي كنند .
گاهي اوقات بعد از نرماله كردن ، قطعات را به منظور دست يافتن به سختي مورد نظر و حذف تنش هاي باقي مانده در اثر تفاوت سرعت سرد كردن در قسمتهاي مختلف قطعه به دليل اختلاف اندازه ي مقطع، قطعه ي ريختگي را تمپرمي كنند.
تمپر كردن قطعات بعد از نرماله كردن براي دستيابي به چقرمگي بالا و مقاومت به ضربه مي باشد. تاثير تمپر كردن در سختي و استحكام كششي به تركيب شيميايي چدن و ميزان سختي بدست آمده از نرماله كردن بستگي دارد.
تمپر كردن شامل حرارت دادن مجدد تا دماي425C-650C و نگهداري در اين دما به مدت1h براي هر اينچ ضخامت از مقطع مي باشد . اين دما براي دستيابي به مشخصات گوناگون در مدت بالاي رنج معمول، متفاوت مي باشد.
كونچ و تمپر كردن چدن داكتيل
قطعا ت تجاري قبل از كونچ و تمپركردن معمولاً در دمايي بين845C-925C آستنيته مي شوند.براي به حداقل رساندن تنش و جلوگيري از ترك خوردن قطعه براي كونچ متوسط روغن ترجيحاً از روغن استفاده ميشود ولي براي قطعات با اشكال ساده از آب يا آب نمك استفاده مي شود و قطعا ت پيچيده را به منظور جلوگيري از ترك خوردن در حين كونچ، در روغن پيش گرم شده تا دماي 80C-100Cكونچ مي كنند .
تاثيركونچ كردن درآب مكعبي ازجنس چدن نشكن كه تا دماي آستنيته گرم شده بود بدست آمدن سختي بالايي(55-75HRC) بوده است. دماي آستنيته كردن دراين مكعب بين 845C-870C بوده است . در دمايي بالاتر از 870C مقدار زمينه ي حاوي كربن (آستنيت) بيشتري بدست خواهد آمد به همين دليل مقدار آستنيت بيشتري(پس از كونچ كردن) حفظ خواهد شد كه در نتيجه ي اين امر سختي كاهش پيدا مي كند .
قطعا ت بعد از كونچ شدن بايد تمپر شوند تا تنش حاصل از كونچ شدن آزاد گردد. سختي حاصله بعد از تمپر كردن به عناصر آلياژي موجود ، دماي تمپر كردن و به همان اندازه زمان تمپر كردن بستگي دارد . تمپر كردن در دماي 450C – 600C باعث كاهش سختي مي شود كه ميزان آن به عناصر آلياژي موجود،سختي اوليه وزمان تمپر بستگي دارد . سختي ويكرز چدن نشكن كونچ شده به وسيله ي دما و زمان تمپر كردن تغيير مي كند .
تمپر كردن چدن نشكن از يك فرآيند دو مرحله اي تشكيل مي شود. مرحله ي اول همانند فرآيند فولادها رسوب دادن كاربيدها است . مرحله ي دوم (معمولاً به وسيله ي كاهش سختي در زمان طولاني تر مشخص مي شود) جوانه زني و رشد گرافيت ثانويه كه حاصل از مصرف شدن كاربيدها مي باشد. كاهش سختي به همراه تشكيل گرافيت ثانويه همانند كاهش استحكام كششي و به همان اندازه كاهش استحكام خستگي مي باشد. هر آلياژي با در صد مشخص (عناصر) داري درجه حرارت تمپر مفيد خواهد بود.
آستمپر كردن چدن نشكن
هنگامي كه استحكام مناسب به همراه انعطاف پذيري مورد نظر باشد، عمليات حرارتي كننده اجازه مي دهد ساختار آستمپر شده از آستنيت و فريت توليد گردد. زمينه ي آستمپر شده باعث بهبود قابل توجه استحكام كششي و انعطاف پذيري مي شود كه در هر نوع چدن داكتيل ممكن مي باشد. براي بدست آوردن آن خواص مطلوب نياز است كه به اندازه ي سطح مقطع ، زمان و درجه حرارت داده شده به قطعه در خلال آستنيته و آستمپركردن دقت و توجه كافي شود .
اندازه سطح مقطع و عناصر آلياژي
با افزايش سطح مقطع سرعت كاهش درجه حرارت بين دماي آستنيته و دماي آستمپر كردن تغيير مي كند . آستمپر كردن يا شامل كونچ كردن در روغن داغ 240C ، كونچ كردن به وسيله ي جريان نيتريت / نيترات،كونچ كردن توسط جريان هوا (فقط براي قطعات نازك يا قسمت هاي كوچك) و براي نوع ابزار كونچ كردن در حمام سرب. به منظور جلوگيري از واكنش محصولات در درجه حرارت بالا (مثل پرليت در مقاطع ضخيم) بايد آنها را در حمام نمك كونچ كرد . سختي به وسيله ي كونچ كردن در آب يا افزودن عناصر آلياژي (مثل مس ، نيكل ، منگنز ، يا موليبدن ) كه باعث تسهيل سختي پذيري پرليت مي شوند . اين نكته مهم است مه بدانيم عناصر فوق باعث به وجود آمدن جدايش در هنگام انجماد مي شوند كه اين امر براي قابليت آستمپر شدن و در نتيجه ي آن براي خواص مكانيكي مضر خواهد بود. انعطاف پذيري و مقاومت به ضربه پارامترهايي هستند كه شديداً تحت تاثير قرار مي گيرند .
منگنز و موليبدن بيشترين تاثير را در سختي پذيري پرليت دارند اما به منظور افزايش آهن يا تعديل كاربيدها هميشه موجب سگرگاسيون و سرد شدن ناحيه ي بين سلولي در قطعه مي شوند . در صورتيكه مس و نيكلبه همان اندازه تاثيري در سختي پذيري ندارند ولي باعث جدا شدن گرافيت كروي در زمينه ميشوند و از به وجود آمدن كاربيدهاي مضرجلوگيري مي كنند. تركيبي از اين عناصر به اندازه ي مساوي به دليل تاثير آنها در سختي پذيري به قطعه افزوده مي شود.
دما و زمان آستنيته كردن
معمولاً شكل شماتيك دياگرام نشان مي دهد كه با افزايش دماي استنيته كردن ، زمينه ي حاوي كربن (آستنيت) نيز افزايش مي يابد. زمينه ي فعلي حاوي كربن ، به شكل مخلوط شدن عناصر موجود در زمينه ، مقدار آنها و موقعيت آنها در زمينه بستگي دارد (سگرگاسيون) .
مهمترين عامل تعيين كننده در زمينه ي حاوي كربن در چدن داكتيل سيليسيم موجود در آن است ، با افزايش سيليسيم براي دماي آستنيته ي معيين مقدار كربن موجود در زمينه كاهش مي يابد. دماي آستنيته بين845C-925C معمولاً مناسب است و زمان آستنيته كردن براي كربن گيري مجدد تمام زمينه تقريباً 2 ساعت كافي مي باشد.
دماي استنيته كردن كاملاً تحت تاثير مقدار كربن موجود در زمينه مي باشد كه اثر مهم آن در سختي پذيري مي باشد. دماي آستنيته ي بالا و مقدار كربن بالا باعث افزايش سختي پذيري مي شود . كه باعث كاهش سرعت دگرگوني آستنيت همدما مي شود .
زمان و دماي آستپمر كردن
دماي آستمپر كردن اولين پارامتر تعيين كننده ي ميكروساختار نهايي در قطعه و در نتيجه ي آن سختي و استحكام محصول آستمر شده است . با افزايش دماي آستمپر كردن ، سختي و مقاومت به ضربه ي متفاوتي خواهيم داشت.
دستيابي به حداكثر انعطاف پذيري در دماي معيين آستمپر كردن ، تابع حساس زمان مي باشد . افزايش اوليه ي ازياد طول نسبي در مرحله ي (1) رخ مي دهد و پيشرفت ازياد طول نسبي در مرحله ي نهايي اتفاق مي افتد كه در آن نقطه ي شكست آستنيت حداكثر مي باشد . آستمپر كردن مجدد فقط به منظور كاهش انعطاف پذيري در مرحله ي (2)واكنش كه در نتيجه ي تجزيه ي ساختار به تعادل بينيت مي باشد . زمان آستمپر كردن از 4-1 ساعت متفاوت مي باشد.

منابع:

www.sanayee.com

www.mohandesanesanaat.com